
INITIAL PHASE OF DEVELOPING DYNAMIC PERTURBATIONS IN A NONLINEARLY 

HEAT CONDUCTING GAS 

A. S. Romanov and A. A. Stytsyna UDC 517.9:532 

A model often used of radiative heat transport is the approximation of radiative heat 
conduction [i]. The validity condition of the model consists of small radiative mean free 
path in comparison with the characteristic size of the heated region. 

A gas heated by radiation starts moving under the action of a radiative flux. To de- 
scribe this process mathematically, along with the equation of radiative heat conductivity 
it is necessary to consider the system of equations of gas dynamics. It can be expected, 
however, that at the initial phase of evolving dynamic perturbations the radiative heat trans- 
fer process is practically independent of the gas motion (see, e.g., [2]). This fact makes 
it possible to analyze asymptotically the gas motion during its intense heating by radiation 
till the formation of isothermal rupture, which, as a result of further evolution is trans- 
formed into a shock wave, breaking away from the bulk of the gas heated by the radiation [I]. 

The system of equations of gas dynamics for one-dimensional motion of an ideal non- 
linearly heat conducting gas is written in the following form in dimensionless variables 

ap ~ Opu O, au Ou ~ ~T T O p ' _ _  O, 
a-7- oz = ~+u~-f+-ff+---~7-- P (1) 
~T ~T ~u t # OT 
--or + u~ + @- I) T ~= --p o~--~(T) ~7" 

Here x is the coordinate along which heat is transported and the gas moves, t is time, p(x, 
t), u(x, t), and T(x, t) are the gas density, velocity, and temperature, l(T) is the heat 
conduction coefficient of the gas, which in a substantial temperature interval can be written 
in the form I = nT n-1 (n > i) [i], and 7 is the adiabat index. 

Let the half-space x > 0 be filled by a cold (T = 0), resting (u = 0), and homogeneous 
(p = i) gas. Starting with the moment of time t = 0, the gas temperature at the boundary 
x = 0 varies by the power law T = t k, and heat penetrates the region x > 0. It is assumed 
that the boundary x = 0 is impenetrable for the gas. Its motion is then completely described 
by system (i) with the boundary conditions 

T = t , u -----0 for x= 0!; 

T = ~.cgT/6~x---- 0 f o r  x-----  o o  

and the initial conditions 

T = u = 0,:p = Ifor t---- 0, x>0, 

(2) 

(3) 

(4) 

It is well known that if the heat conductivity degenerates to l(0) = 0, then heat in the cold 
gas propagates in the form of a thermal wave [3, 4], i.e., there exists a surface x = xf(t), 
strictly separating the region of the heated gas (T > 0) x < xf(t) from the cold region 
(T = 0) x > xf(t). In this case, due to the continuity of temperature and heat flux, the 
boundary conditions (3) must be satisfied at the surface x = xf(t) (the front of the thermal 
wave). Taking into account this feature of heat propagation in a nonlinearly heat conducting 
gas, as well as the initial and boundary conditions (2)-(4), we transform to the independent 
variables x, t + N = x/xf(t), t, being "natural" for the process considered [2], and the de- 
pendent variables T = the(~,: t), u = t~u(~$)~ p = 1-~-t~r(~,t), xf = a(t)~ a' The constants a > 0, 

> 0, o > 0 are subject to determination. Assuming that the functions @(N~t), v(~ ~, r(N,t),e(t), 
along with their derivatives, have asymptotic values of order O(i) for t § 0,-then the follow- 

ing transition to the new variables in system (i) they are found in the form == 21--[k(3--n) + 

i], ~=k(2--,)+I, o =ilk(n--l)+ I]. The system (i) is transformed in this case to the form 
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Or t Ov t6 Ovr [Or "a Or] 
~ , ' - - o ~ + T ~ + - y - ~  + t  ~ q - ~  = 0 ,  

a v - -  , . l  ~ + w ~ + --s i + t~,. ~n + -7---~ + t ~ -~ ~ = 0 ,  

- - k O + ~ - ~ +  + ( ? - - 1 )  ~ oo 
a * (i + t~r) O,f ~ a On J + t -y n = 0 .  

(5) 

It follows from (5) that for t + 0 radiative heat transfer can be treated independently of 
the gas motion. The functions 0(N, t) and a(t) are independent of time, and are determined 
from the equation 

I 020 ~ ~0 
a20~ ~ + o ~ . k O = O  (6)  

and bounda r y  c o n d i t i o n s  b e i n g  a c o n s e q u e n c e  o f  ( 2 ) ,  ( 3 ) :  
00 O = i  for ~]=0, 0=~=0 for ~-i. (7) 

The solution of problem (6), (7) can be carried out either numerically or found analyti- 
cally in the form of series in powers of (i - n). Within the same approximation the func- 
tions r(N, t) = r(N) and v(q, t) = v(n) are obtained in the form of quadratures (see [2]): 

- - -  00 d~], 

, (8) 

r = ~ l  ~" J ~-~ a~3 
I. 

(here we took into account the nature of gas motion near the front of the thermal wave [5]). 
Applying l'HSspital's rule, we have from (8) 

~ ~ 0  ( 9 )  v(0) = lim~0 v(~) = am 0~ ~=0 ' 

and t h e  s e c ond  b o u n d a r y  c o n d i t i o n  o f  (2 )  seems u n s a t i s f i e d ,  w i t h  i t s  n o n s a t i s f a c t i o n  in  t h e  
a s y m p t o t i c  r e p r e s e n t a t i o n  o f  t h e  s o l u t i o n  i m p l y i n g  t h a t  n e a r  t h e  b o u n d a r y  ~ = 0 t h e r e  e x i s t s  
a thin boundary layer, in which the function v(n, t) varies from a value 0(I) at the exterior 
boundary layer to zero at N = 0 [6, 7]. The width of this boundary layer can be determined 
by comparing the law of boundary motion of the thermal wave xf(t) ~ t a with the propagation 
law of sound perturbations near the boundary x = O: Xv(t) ~ t(k+2)/2. Consequently, the so- 
lutions (8) can be refined within the limits n ~ t6/2- 

For this, according to the scheme of [6, 7], we transform in (5) to the new independent 
variable N* = ~/~/2 and to new dependent dynamic variables r* = e-6r, v* = ~-~v, putting e = O(t). 
Analysis of the system of equations thus obtained shows that ~ = -6/2, ~ = 0. Comparing 
this system with (5) and putting 6/2 < i, one can write the asymptotic shape of Eq. (5), 
describing uniformly in 0 < n < 1 the process with accuracy up to quantities of order O(t~), 
where ~ = min {6, I}. The functions 8, a are primarily found from (6), (7), while the f01- 
lowing relations are obtained for determining r(N, t) and v(N, t) 

%(~, t ) F = -  J q--~/--~ v - - a  n r, 

0,0 ( ,00t( 0 ) 

E q u a t i o n s  (10 )  must  be s o l v e d  f o r  t h e  b o u n d a r y  c o n d i t i o n s  

v = 0 ,  r = 0 f o r  ~ = i , v = 0 f o r ~ = 0 ,  (11)  

which  a r e  a c o n s e q u e n c e  o f  ( 2 ) - ( 4 )  [ 5 ] .  

Here it is necessary to note that the asymptotic shape of the equations of motion of a 
nonlinearly heat conducting gas (6), (i0) is valid when the inequalities o > 0, 0 < ~ < 2 
are satisfied, which, as indicated, were used in deriving relations (6), (i0). These in- 
equalities determine the range of possible values of the constants k, n: -I < k(n - 2) < i, 
k(n - i) > -i. It is also noted that for 6 = 0 the problem has an invariant solution, in- 
vestigated in [8]. 

519 



1,0- 

0~5. 

1 t  I I 

q z 5  0,50 0,7s ,t . 

0- / 

r i q~ 

Fig. i Fig. 2 

The system (i0) has a singular point, whose position is given by the relation q = qf(t), 
where the function qf(t) is determined from the equation X(qf, t) = 0. The character of the 
singular point for t + 0 can be investigated by methods of the qualitative theory [9]. The 
analysis provided showed that for t + 0 it is a node. Therefore it seems possible to con- 
struct continuous solutions of system (i0) satisfying conditions (ii), though their number 
exceeds the order of system (I0). For t > 0 the behavior of the integral curve of system 
(i0) can be found only numerically. 

For numerical analysis it is convenient to transform from (i0) to the equivalent dynamic 
system 

' ) 
a~ ; . + -~-~-~/ ~q r, (12)  

o~ ~ ot~ [t~ ) (  ~ oo / a~ 
- - ~ - - ~ r ~  ~ r - -  

H e r e  �9 i s  a new v a r i a b l e  a l o n g  t h e  i n t e g r a l  c u r v e  i n  t h e  v a r i a b l e  s p a c e  a(q ,  v ,  r ) .  I t  m u s t  
be noted that the limiting transition q + qf corresponds to �9 ~ -~. Therefore, to construct 
the numerical solution in the whole range of definition 0 < q < 1 it is necessary to treat 
two Cauchy problems for the dynamic system (12) with different initial conditions following 
from (Ii): q = I, r = v = 0 and q = v = 0, r = r ~ Since the constant r ~ is unknown ahead 
of time, the second Cauchy problem determines, generally speaking, a single-parameter family 
of integral curves, forming some surface ~z in the variable space ~. The constant r ~ is 
found from the matching condition of the solution of both Cauchy problems at the singular 
point �9 + -~. 

The indicated Cauchy problems were integrated by the modified Euler method. The step 
in the independent variable �9 was taken equal to A~ = -0.i, as well as AIT = A~/3. In Figs. 
1 and 2 we show as examples for k = 0 (in the actual work over this special case we had the 
participation of K. A. Volosov), n = 2, t = 0.3 the projections of the integral curves thus 
constructed (the solid lines). The dashed lines i-4 are the projections of several integral 
curves for r(0, t) ~ r ~ The lines in Figs. 1 and 2, denoted by identical digits, correspond 
to projections of one and the same integral curve. The line f is the projection of lines of 
singular points, confining the surface D1- 

This character of integral curves is retained only during a finite time. For t > t,(k:, 
n) > 0 the integral curve near the singular point is "reversed," and a convolution is formed 
on it [i0]. An example of such an integral curve in projection near the singular point is 
shown in Figs. 3 and 4 for k = 0, n = 2, t = 0.7 (the notations coincide with Figs. i and 
2). Starting from physical considerations, it is necessary to treat only single-valued solu- 
tions of the boundary-value problem (I0), (II). Therefore, for t > re(k, n) the solution 
must contain a strong discontinuity which, generally sepaking, transforms with a jump from 
one integral curve to the other. 

Let the jump be observed for q = qs(t). The values of the gas parameters up to the 
jump vlns+ 0 = v+, rlns+0 = r+ are then uniquely related to their values following the jump vlns_ 0 = 
u_, rln,_0=r_. These conditions in the approximation considered are obtained directly from 
Eq. (I0) Integrating (I0) over the limits from qs - ~ to qs + ~ (~ > 0), and then passing 
to the limit ~ + 0, we obtain 

a~h[r]-- [v]--tB[u,r] = 0~ (13) 

a~q~[vl~(t~/2)[v2]--O~[ln(t+t~r)] =0, 

5 2 0  
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where 0s = 01n=~s, and the square brackets denote the jump value of the function within them. 
It is appropriate to recall that within the approximation adopted the function 8(q) remains 
continuous for q = qs along with its derivatives. 

It is natural to assume that immediately following its generation the jump is small 
([v], [r] ~ i). Expanding, then, the logarithm in a series, and taking into account terms 
in [v] and [r] from [13], we have 

2 
= • - t%)  + t%)  (14) 

i r ]  = [u] ( i  + t O r + ) ( n  ~ - -  t~[v])  -1 (• = azq~ - -  t ~ ) .  

Assigning the position of the jump qs(t), we determine v+ and r+ from the corresponding 
branch of the integral curve of problem (i0), (Ii), while v_ and r_ are found by means of 
relationship (14). Since qs(t) is unknown ahead of time, all possible r_, v_, qs values 
form a line s in the variable space S. The intersection point of this line with the surface 
~i determines the jump position. In Figs. 3 and 4 the dashed lines denote the projections of 
the line s. Numerical calculations have shown that within the calculation accuracy the jump 
within the approximation adopted is realized on the integral curve which is the continuous 
solution of the boundary-value problem (the solid curve in Figs. 3 and 4). The position and 
value of the jump in dynamic variables are shown in Figs. 3 and 4 by arrows. 

It is necessary to note that the analyzed nature of developing dynamic perturbations for 
k = 0, n = 2 occurs in the whole region of variation of parameters k, n indicated above. 
Thus, we have established the generation regime of an isothermal breakup during intense ther- 
mal action on an ideal nonlinearly heat conducting gas. The strong breakup in the dynamic 
variable is generated as a result of evolution of a weak breakup, existing only for a finite 
time. 
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